Statistical learning

http://compcogscisydney.org/psyc32II/

A/Prof Danielle Navarro
d.navarro@unsw.edu.au compcogscisydney.org

Where are we?

- LI: Connectionism

- L2: Statistical learning
- L3: Semantic networks
- L4: Wisdom of crowds
- L5: Cultural transmission
- L6: Summary

Why do networks get this wrong?

teft: A san is holding a oog in his hand
Right: A wonan is holding a dog in her hand
Impen! Eifocon'Sinat
A goat being held by a child is labelled a "dog"

Neuraltalk2: A flock of birds flying in the ase Microsoft Azure: A group of giraffe standing next to a tree

Goats in trees become birds or giraffes

Why do networks get this wrong?

Figure 6. Perceiving scenes without intuitive physics, intuitive psychology, compositionality, and causality. Image captions are generated by a deep neural network (Karpathy \& Fei-Fei 2017) using code from github.com/karpathy/neuraltalk2. Imise credits: Gabriel Villena Femfondez (left), TVBS Tahwan/Agence France-Presse (middle), and AP Photo/Dave Martin (right). Similar examples using images from Reuters news can be found at twitter.cominteresting_jpg.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., \& Gershman, S. J. (20I7). Building machines that learn and think like people. Behavioral and Brain Sciences, 40.

Learning slow...

Each epoch is about I 50 trials This learning unfolds over 750,000 episodes

Learning fast...

Here is a letter written in an alien alphabet
Please write down nine more examples

A "Turing test": Which is the human and which is the machine?

The puzzle: How does a human (or machine) do this "one-shot generalization" if learning is slow???

Structure of the lecture

-What is Bayesian reasoning?

- Two examples of psychological models
- Coincidence detection
- Perceptual magnet effect
- Linking Bayesian cognitive models with Bayesian machine learning

Learning with Bayes' rule

$\mathrm{P}(\mathrm{d} \mid \mathrm{h})$: the likelihood of observing d if h is true

$\mathrm{P}(\mathrm{h})$: the prior probability that h is true
$\mathrm{P}(\mathrm{h} \mid \mathrm{d})$: the posterior probability that h is true

$P(d)$: the probability of the data

But what does this any of this gibberish mean?????

What happened here?
An example of Bayesian reasoning

There are many possible explanations

Let's consider two of them

Someone dropped a wine glass

Kids broke the window

Prior beliefs

$\mathrm{P}(\mathrm{h})$ is the prior, and refers to the inherent plausibility of h as an explanation, before observing any evidence

Before learning anything else I think "wine glass dropping" is 10 times more plausible than "broken window"

Some data

$d=$ there is a cricket ball next to the broken glass

Likelihood of the data

$\mathrm{P}(\mathrm{d} \mid \mathrm{h})$ is the likelihood, and describes the probability that we would have observed data d if the hypothesis h were true

When I drop a wine glass...

... It's very unlikely that I just happen to do so right next to a cricket ball

$$
\mathrm{P}(\mathrm{~d} \mid \mathrm{h})=0.00 \mathrm{I}
$$

Likelihood of the data

$\mathrm{P}(\mathrm{d} \mid \mathrm{h})$ is the likelihood, and describes the probability that we would have observed data d if the hypothesis h were true

When the kids break a window...

... It's not at all uncommon for a cricket ball to end up near the glass

$$
P(d \mid h)=0.15
$$

Likelihood of the data

$\mathrm{P}(\mathrm{d} \mid \mathrm{h})$ is the likelihood, and describes the probability that we would have observed data d if the hypothesis h were true

$$
\frac{P\left(d \mid h_{1}\right)}{P\left(d \mid h_{2}\right)}=\frac{0.15}{0.001}=150
$$

Relative probability of the data according to the hypotheses is the evidentiary value of the data, referred to as the likelihood ratio (or the Bayes factor)

The data (cricket ball) are 150 times more likely under the "broken window" hypothesis

Posterior beliefs

$\mathrm{P}(\mathrm{h} \mid \mathrm{d})$ is the posterior, and refers to the "updated" plausibility of h as an explanation, after observing the evidence

But I have many hypotheses?

Prior probabilities for all hypotheses

We have a set of hypotheses h, (called a hypothesis space) each of which has some degree of prior plausibility

There is a conservation of belief rule... if we listed all the hypotheses and assessed their prior plausibility, they would have to sum to I

Likelihoods for the data, according to each hypothesis

Every hypothesis supplies a likelihood... the probability of the data (cricket ball) if that hypothesis is correct

Prior x Likelihood

To calculate posterior plausibility, hypotheses are "scored" by multiplying the prior plausibility by the likelihood of the data

$$
P(h \mid d) \propto P(d \mid h) \times P(h)
$$

My posterior belief $\mathrm{P}(\mathrm{h} \mid \mathrm{d})$ in h now that l've seen data d...

... the prior belief $P(h)$ multiplied by the likelihood $\mathrm{P}(\mathrm{d} \mid \mathrm{h})$
... is proportional to ...
(we'll come back to that)

Prior x Likelihood

To calculate posterior plausibility, hypotheses are "scored" by multiplying the prior plausibility by the likelihood of the data

$$
P(h \mid d) \propto P(d \mid h) \times P(h)
$$

The posterior must satisfy the conservation of belief, and must sum to I

The prior must satisfy the conservation of belief, and must sum to I

Bayes' rule

$$
P(h \mid d)=\frac{P(d \mid h) \times P(h)}{\sum_{h^{\prime}} P\left(d \mid h^{\prime}\right) \times P\left(h^{\prime}\right)}
$$

Conservation of belief means that we have to divide by the sum, taken over all hypotheses

Bayes' rule

$$
P(h \mid d)=\frac{P(d \mid h) \times P(h)}{P(d)}
$$

That big sum is referred to as the probability of the data $P(d)$
(still confused? the tutorial exercise will go through this!)

Bayesian models of cognition

Examplel:When is a coincidence more than a coincidence?

Mere coincidence? Or something else?

You are travelling overseas and meet your next door neighbor

> You flip a coin 10 times and it comes up heads every time

Five people are having a conversation and they
 were all born on a Monday

Coincidences model

(Griffiths \& Tenenbaum 2007)

Argues that we evaluate two hypotheses:
h_{1} : the observations are due to chance outcomes from an unstructured process
h_{2} : the observations are the product of a structured process

Coincidences model

(Griffiths \& Tenenbaum 2007)
(logarithm of) the prior odds

(logarithm of) the posterior odds

Coincidences in space

When is spatial clustering "mere coincidence"?
h_{0} : uniform

h_{1} : uniform+regularity

Coincidences in space

Increasing the total number of points....
Human
Model

Changing the proportion of points...
Human
Model

Coincidences in space

Moving the points around...

Human
Model

Changing the spread...

Human
Model

Coincidences in time

But it's complicated...

(Tauber et al 2017)

A group of scientists investigating genetic engineering have conducted a series of experiments testing drugs that influence the development of rat fetuses. All of these drugs are supposed to affect the sex chromosome: they are intended to affect whether rats are born male or female.The scientists tested this claim by producing 100 baby rats from mothers treated with the drugs. Under normal circumstances, male and female rats are equally likely to be born. The results of these experiments are shown below:The identities of the drugs are concealed with numbers, but you are given the number of times male or female rats were produced by mothers treated with each drug.

But it's complicated...

(Tauber et al 2017)

If people used the "optimal" statistical model to update data curves should look like this...
optimal Bayes

Empirical data for individual subjects are systematically flatter... we revise our beliefs more slowly when evidence arrives

Human

(very old phenomenon... conservatism in belief updating)

But it's complicated...

(Tauber et al 2017)

People do have stronger prior biases to believe that a "genetic" experiment works (as opposed to "psychokinesis") but...
... we also apply a more conservative Bayesian belief revision rule when the data are at odds with our priors!

Bayesian models of cognition

Example 2: How do categories influence perception?

Bayesian perceptual magnets

(Feldman et al 2009)

We have knowledge about the perceptual categories that are used in our language

Sensory input is noisy, and it's often hard to decode speech sounds

English Vowels

Figure 1. Map of vowel space from Hillenbrand et al.'s (1995) production experiment. Ellipses delimit regions corresponding to approximately 90% of tokens from each vowel category. Adapted from "Acoustic Characteristics of American English Vowels" by J. Hillenbrand, L. A. Getty, M. J. Clark, \& K. Wheeler, 1995, Journal of the Acoustical Society of America, 97, p. 3103. Copyright 1995 by the Acoustical Society of America. Reprinted with permission.

Bayesian perceptual magnets

(Feldman et al 2009)

 Bose firker avay. Fexppion of specth weshl proisely oe ite

 catecy faer is diven is Fiper 3

Matrmatical Presemetion of the Madel

The rectiof foenter the metent mot wieir the fancworl

$\left.T_{i c}-M_{\mu}, \theta_{2}\right)$

Blah blah blah lots of fancy maths because they are smart

Short version:

- Knowledge about the perceptual/linguistic categories supplies a prior $\mathrm{P}(\mathrm{h})$ for what the possible speech sound could have been
- Sensory system supplies the likelihood $\mathrm{P}(\mathrm{d} \mid \mathrm{h})$ that we would receive this input given any speech sound

Bayesian perceptual magnets

(Feldman et al 2009)

The categorical knowledge shapes the perceived sound...
(a)

Perceived Stimulus

The predicted distortion pattern depends on the locations of the categories...

Perceived Stimulus

Bayesian perceptual magnets

(Feldman et al 2009)

Example I:

Moving the stimulus relative to the category

Bayesian perceptual magnets

(Feldman et al 2009)

Example 2:

Changing the strength of prior knowledge relative to the noise in the environment

Bayesian perceptual magnets

(Feldman et al 2009)

No Noise
(a)

Subject Confusion Data

The perceptual magnet effect is strongest in moderately noisy environments, roughly in accordance with model predictions
(Needs to be clean enough that you can work out what the category is supposed to be but not so noisy that you can't hear anything)

Connecting Bayesian cognitive models with Bayesian machine learning

The structure problem

teft: A agn is holding a dog in his hand Right: A wonan is holding a dog in her hand 1000e! efocon-Siant

A goat being held by a child is labelled a "dog"

Neuraltalk: A flock of birds flying in the ase
Microsoft Azure: A group of giraffe standing next to a tree

Goats in trees become birds or giraffes

The structure problem

- Even though it is comparatively simple, this is still a structured object.

- It has distinct parts, they are related to one another
- There is a production method (writing) that tells you what the relations are
- Human reasoning about these concepts exploits this knowledge
- How do we build theories that do that?

Human level concept learning with "Bayesian program induction"
 (Lake et al 2015)

A library of visual concepts

Fig. 2. Simple visual concepts for comparing human and machine learning. 525 (out of 1623) character concopts, shown with one example each.

A generative "language" for characters

Fig. 3. A generative model of handwritten characters. (A) New types are generated by choosing primitive actions (color coded) from a lbrary 0). combining these subparts (i) to make parts (i 1), and combining parts with relations to define simple programs (k). New tokens are generated by running these programs (V), which are then rendered as raw data (vi). (B) Pseudocode for generating new types y and new token images $f^{(00)}$ for $m=1$. ... M, The function $f(\%)$) transforms a subpart sequence and start iocation into a trajectory.

Grammar allows structure learning

B Human drawings

σ	σ	σ
σ	σ	σ
σ	σ	σ

Human parses

	\square	\vec{v}
5		6
$\rightarrow b$	W_{b}	\leftrightarrow

$\xrightarrow[0]{4}$	\square	\cdots
3	\square	\rightarrow
	T_{v}	\vec{v}

$H G$
$H G H$
$H O$

$j \rightarrow b$		
$\Rightarrow t$	25	3 H
2	5	

F	F	FL
F	F	$F C$
F	F	$\Pi 二$

\longrightarrow	$\sqrt{4}$	W_{G}
$\stackrel{H}{+}$		$\xrightarrow[7]{\square}$
$+\frac{1}{4}$	$\overrightarrow{\hbar_{4}}$	π

-

$$
1-2-3-4-5
$$

Structure allows smart generalization!

Fig. 6. Human and machine performance was compared on (A) one-shot classification and (B) four generative tasks. The creative outputs for humans and models were compared by the percent of human judges to correctly identify the machine. Ideal performance is 50%, where the machine is perfectly confusable with humans in these two-alternative forced choice tasks (pink dotted line). Bars show the mean \pm SEM $[N=10$ alphabets in (A)]. The no learning-to-learn lesion is applied at different levels (bars left to right): (A) token; (B) token, stroke order, type, and type.

Thanks!

